

Objetivos

● Ejemplos de listas
– Ejemplos de código
– Tres problemas resueltos
– Aterrizar estrategia de resolución de problemas

● Listas de Listas
– Motivación
– Uso básico
– Aplicaciones – casos particulares

Ejemplos de Listas

Ejemplos de código

Código
L = list()
L.append(10)
L.append(100)
L.append(1000)
print(L)

Resultado
[10, 100, 1000]

Código
L = list()
L.insert(0,10)
L.insert(0,100)
L.insert(0,1000)
print(L)

Resultado
[1000, 100, 10]

Ejemplos de código

Código
L = list("HOLA")
L.pop(2)
L.pop(0)
print(L)

Resultado
['O', 'A']

Código
L = list()
L.extend(range(5))
L.extend("AEIOU")
print(L)

Resultado
[0, 1, 2, 3, 4, 'A', 'E',
'I', 'O', 'U']

Bajas acumuladas

Bajas acumuladas

● Problema: implemente una función, de nombre acum, que reciba
como argumento una lista de números, que representa una serie
de tiempo de bajas diarias, y que retorne otra lista de números,
pero con las bajas acumuladas diarias.

● Por ejemplo, acum([0, 5, 10, 2, 3]) debe retornar la
lista [0, 5, 15, 17, 20].

Bajas acumuladas

● Problema: implemente una función, de nombre acum, que reciba
como argumento una lista de números, que representa una serie
de tiempo de bajas diarias, y que retorne otra lista de números,
pero con las bajas acumuladas diarias.

● Por ejemplo, acum([0, 5, 10, 2, 3]) debe retornar la
lista [0, 5, 15, 17, 20].

Bajas acumuladas

● Problema: implemente una función, de nombre acum, que reciba
como argumento una lista de números, que representa una serie
de tiempo de bajas diarias, y que retorne otra lista de números,
pero con las bajas acumuladas diarias.

● Por ejemplo, acum([0, 5, 10, 2, 3]) debe retornar la
lista [0, 5, 15, 17, 20].def acum(bajas_dia):

 resp = []

 return resp

Bajas acumuladas

● Problema: implemente una función, de nombre acum, que reciba
como argumento una lista de números, que representa una serie
de tiempo de bajas diarias, y que retorne otra lista de números,
pero con las bajas acumuladas diarias.

● Por ejemplo, acum([0, 5, 10, 2, 3]) debe retornar la
lista [0, 5, 15, 17, 20].

● Bajas acumuladas se construyen para cada número --> bucle for
● Debemos sumar cada número recibido y debemos anexar a lista

respuesta

Bajas acumuladas

● Problema: implemente una función, de nombre acum, que reciba
como argumento una lista de números, que representa una serie
de tiempo de bajas diarias, y que retorne otra lista de números,
pero con las bajas acumuladas diarias.

● Por ejemplo, acum([0, 5, 10, 2, 3]) debe retornar la
lista [0, 5, 15, 17, 20].

● Bajas acumuladas se construyen para cada número --> bucle for
● Debemos sumar cada número recibido y debemos anexar a lista

respuesta

def acum(bajas_dia):
 resp = []
 z = 0
 for x in bajas_dia:
 z += x
 resp.append(z)
 return resp

Fibonacci

Fibonacci

● La serie de Fibonacci comienza con el 0 (cero), luego el 1 (uno) y
los siguientes números se construyen a partir de la suma de los
dos números anteriores. Por eso siguen 1, 2, 3, 5, 8, etc.

● Implemente la función LFIB, la cual recibe un argumento N, que
es un número entero, y que retorne una lista con los N primeros
números de Fibonacci.

● Ejemplo, LFIB(5) retorna [0, 1, 1, 2, 3], mientras que
LFIB(1) retorna [0] y LFIB(0) retorna [].

Fibonacci

● La serie de Fibonacci comienza con el 0 (cero), luego el 1 (uno) y
los siguientes números se construyen a partir de la suma de los
dos números anteriores. Por eso siguen 1, 2, 3, 5, 8, etc.

● Implemente la función LFIB, la cual recibe un argumento N, que
es un número entero, y que retorne una lista con los N primeros
números de Fibonacci.

● Ejemplo, LFIB(5) retorna [0, 1, 1, 2, 3], mientras que
LFIB(1) retorna [0] y LFIB(0) retorna [].

Fibonacci

● La serie de Fibonacci comienza con el 0 (cero), luego el 1 (uno) y
los siguientes números se construyen a partir de la suma de los
dos números anteriores. Por eso siguen 1, 2, 3, 5, 8, etc.

● Implemente la función LFIB, la cual recibe un argumento N, que
es un número entero, y que retorne una lista con los N primeros
números de Fibonacci.

● Ejemplo, LFIB(5) retorna [0, 1, 1, 2, 3], mientras que
LFIB(1) retorna [0] y LFIB(0) retorna [].

def LFIB(N):
 resp = []

 return resp

Fibonacci

● Aterricemos el algoritmo
● Casos especiales:

– Para N = 0, retornar la lista vacía []
– Para N = 1, retornar la lista [0]
– Para N = 2, retornar la lista [0, 1]

● Luego:
– Desde [0, 1] debemos agregar N-2 elementos
– Agregar nuevo elemento basándonos en los dos últimos:

x = resp[-1] + resp[-2]
resp.append(x)

Fibonacci

● Aterricemos el algoritmo
● Casos especiales:

– Para N = 0, retornar la lista vacía []
– Para N = 1, retornar la lista [0]
– Para N = 2, retornar la lista [0, 1]

● Luego:
– Desde [0, 1] debemos agregar N-2 elementos
– Agregar nuevo elemento basándonos en los dos últimos:

x = resp[-1] + resp[-2]
resp.append(x)

def LFIB(N):
 if N <= 0:
 return []
 if N == 1:
 return [0]
 if N == 2:
 return [0,1]
 resp = [0,1]
 for i in range(N-2):
 x = resp[-1] + resp[-2]
 resp.append(x)
 return resp

Varianza poblacional

Varianza poblacional

● Implemente una función, de nombre simvarianza, que reciba
una lista de números como argumento/parámetro y que retorne la
varianza poblacional de esos números.

● La varianza poblacional se puede calcular así: si A es el promedio
simple de esos números y B es el promedio del cuadrado de esos
números, entonces la varianza poblacional es B – A².

● Por ejemplo, para [10, 7, 4, 1, 11, 20, 15, 10, 14, 6], tenemos que
A = 9.8 y B = 124.4. La varianza muestral es 124.4 – 9.8² = 28.36.

Varianza poblacional

● Implemente una función, de nombre simvarianza, que reciba
una lista de números como argumento/parámetro y que retorne la
varianza poblacional de esos números.

● La varianza poblacional se puede calcular así: si A es el promedio
simple de esos números y B es el promedio del cuadrado de esos
números, entonces la varianza poblacional es B – A².

● Formalidad:
– Hay que definir una función simvarianza
– La función recibe un argumento (una lista de números)
– La función retorna un número

Varianza poblacional

● Implemente una función, de nombre simvarianza, que reciba
una lista de números como argumento/parámetro y que retorne la
varianza poblacional de esos números.

● La varianza poblacional se puede calcular así: si A es el promedio
simple de esos números y B es el promedio del cuadrado de esos
números, entonces la varianza poblacional es B – A².

● Formalidad:
– Hay que definir una función simvarianza
– La función recibe un argumento (una lista de números)
– La función retorna un número

def simvarianza(L):
 resp = 0

 return resp

Varianza poblacional

● Implemente una función, de nombre simvarianza, que reciba
una lista de números como argumento/parámetro y que retorne la
varianza poblacional de esos números.

● La varianza poblacional se puede calcular así: si A es el promedio
simple de esos números y B es el promedio del cuadrado de esos
números, entonces la varianza poblacional es B – A².

● Algoritmo:
– “esos números” --> todos esos números --> bucle for
– Variables intermedias: A y B
– Fórmula final: B – A².

Varianza poblacional

● Implemente una función, de nombre simvarianza, que reciba
una lista de números como argumento/parámetro y que retorne la
varianza poblacional de esos números.

● La varianza poblacionalse puede calcular así: si A es el promedio
simple de esos números y B es el promedio del cuadrado de esos
números, entonces la varianza poblacional es B – A².

● Algoritmo:
– “esos números” --> todos esos números --> bucle for
– Variables intermedias: A y B
– Fórmula final: B – A².

def simvarianza(L):
 A = 0
 B = 0
 for num in L:
 A += num
 B += num**2
 A = A / len(L)
 B = B / len(L)
 resp = B - A**2
 return resp

Listas de Listas

Aplicaciones

● Tablas
● Indicadores
● Bases de datos
● Matrices
● Mapas
● Redes

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) ==
● len(L[0]) ==
● len(L[1]) ==
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) ==
● len(L[1]) ==
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) ==
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) == 4
● L[0] ==
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) == 4
● L[0] == [1, 5, 2]
● L[1][-1] ==

● El código anterior define una
lista de listas

Lista de listas

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

¿Cuánto vale?

● len(L) == 3
● len(L[0]) == 3
● len(L[1]) == 4
● L[0] == [1, 5, 2]
● L[1][-1] == 1

● El código anterior define una
lista de listas

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

● Consideremos la lista apuntada
por la variable L (a la izquierda)

● ¿Cómo cambiamos ese 7 por
un 9?

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1]

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1]

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1][2]

Cambiando 7 por 9

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1]

L = [[1, 5, 2],
[0, 0, 7, 1],
[3, 2, 1]]

L[1][2]

L = [[1, 5, 2],
[0, 0, 9, 1],
[3, 2, 1]]

L[1][2] = 9

Sea:

L = [[1,2,3], [4,5,6], [7,8,9]]
L[1] = L[2]
print(L)

¿Qué imprime este código? (aprox)

Sea:

L = [[1,2,3], [4,5,6], [7,8,9]]
L[1] = L[2]
print(L)

¿Qué imprime este código? (aprox)

(a) [[1,2,3], [1,2,3], [1,2,3]]
(b) [[4,5,6], [4,5,6], [7,8,9]]
(c) [[1,2,3], [4,5,6], [7,8,9]]
(d) [[1,2,3], [4,5,6], [4,5,6]]
(e) [[1,2,3], [7,8,9], [7,8,9]]

Sea:

L = [[1,2,3], [4,5,6], [7,8,9]]
L[1] = L[2]
print(L)

¿Qué imprime este código? (aprox)

(a) [[1,2,3], [1,2,3], [1,2,3]]
(b) [[4,5,6], [4,5,6], [7,8,9]]
(c) [[1,2,3], [4,5,6], [7,8,9]]
(d) [[1,2,3], [4,5,6], [4,5,6]]
(e) [[1,2,3], [7,8,9], [7,8,9]]

Sea:

L = [[1,2,3], [4,5,6], [7,8,9]]
L.append(L.pop(0))
print(L)

¿Qué imprime este código? (aprox)

Sea:

L = [[1,2,3], [4,5,6], [7,8,9]]
L.append(L.pop(0))
print(L)

¿Qué imprime este código? (aprox)

(a) [[4,5,6], [1,2,3], [1,2,3]]
(b) [[1,2,3], [7,8,9], [7,8,9]]
(c) [[4,5,6], [1,2,3], [7,8,9]]
(d) [[4,5,6], [7,8,9], [1,2,3]]
(e) [[4,5,6], [7,8,9]]

Sea:

L = [[1,2,3], [4,5,6], [7,8,9]]
L.append(L.pop(0))
print(L)

¿Qué imprime este código? (aprox)

(a) [[4,5,6], [1,2,3], [1,2,3]]
(b) [[1,2,3], [7,8,9], [7,8,9]]
(c) [[4,5,6], [1,2,3], [7,8,9]]
(d) [[4,5,6], [7,8,9], [1,2,3]]
(e) [[4,5,6], [7,8,9]]

Sea:
L = [list(), list()]
for k in range(10):
 if k%2 == 0:
 L[0].append(k)
 else:
 L[1].append(k)
print(L)

¿Qué imprime este código? (aprox)

Sea:
L = [list(), list()]
for k in range(10):
 if k%2 == 0:
 L[0].append(k)
 else:
 L[1].append(k)
print(L)

¿Qué imprime este código? (aprox)

(a) [[0,2,4,6,8], [1,3,5,7,9]]
(b) [[1,2,3,4,5], [6,7,8,9,10]]
(c) [[1,3,5,7,9], [0,2,4,6,8]]
(d) [[1,3,5,7,9], [1,3,5,7,9]]
(e) [5, 5]

Sea:
L = [list(), list()]
for k in range(10):
 if k%2 == 0:
 L[0].append(k)
 else:
 L[1].append(k)
print(L)

¿Qué imprime este código? (aprox)

(a) [[0,2,4,6,8], [1,3,5,7,9]]
(b) [[1,2,3,4,5], [6,7,8,9,10]]
(c) [[1,3,5,7,9], [0,2,4,6,8]]
(d) [[1,3,5,7,9], [1,3,5,7,9]]
(e) [5, 5]

Representaciones típicas

● Objetivos:
– Conocer cómo las listas de

listas pueden representar
algunas objetos o ideas

– Entender cómo implementar
soluciones

– Dar una dimensión
ampliamente aplicable a
listas de listas

Representado planillas de cálculo

● Un caso típico de uso de listas
de listas es en el procesamiento
de datos en tablas o planillas

● Los datos de la planilla de la
derecha vienen en la forma

L = [...,[sexo,edad,peso,altura],...]
(ver siguiente lámina)

● Los datos representados vienen
de una muestra real de
estadísticas biométricas
sencillas

PLANILLA

Sexo Edad Peso Altura
Mujer 24 68 156
Hombre 35 75 170
Mujer 26 62 175
Hombre 62 61 169
Mujer 50 93 180
Hombre 31 67 171
Mujer 44 79 182
Hombre 30 71 159
Mujer 41 69 160
Mujer 51 68 158
Mujer 26 72 169

Representado planillas de cálculo

● Como lista de listas:

planilla = [
 ['Sexo', 'Edad', 'Peso', 'Altura'],
 ['Mujer', 24, 68, 156],
 ['Hombre', 35, 75, 170],
 ['Mujer', 26, 62, 175],
 ['Hombre', 62, 61, 169],
 ['Mujer', 50, 93, 180],
 ['Hombre', 31, 67, 171],
 ['Mujer', 44, 79, 182],
 ['Hombre', 30, 71, 159],
 ['Mujer', 41, 69, 160],
 ['Mujer', 51, 68, 158],
 ['Mujer', 26, 72, 169]]

PLANILLA

Sexo Edad Peso Altura
Mujer 24 68 156
Hombre 35 75 170
Mujer 26 62 175
Hombre 62 61 169
Mujer 50 93 180
Hombre 31 67 171
Mujer 44 79 182
Hombre 30 71 159
Mujer 41 69 160
Mujer 51 68 158
Mujer 26 72 169

Representado planillas de cálculo

● Aquí va la lista de listas completa:

planilla = [['Sexo', 'Edad', 'Peso', 'Altura'], ['Mujer', 24, 68, 156],
 ['Hombre', 35, 75, 170], ['Mujer', 26, 62, 175], ['Hombre', 62, 61, 169],
 ['Mujer', 50, 93, 180], ['Hombre', 31, 67, 171], ['Mujer', 44, 79, 182],
 ['Hombre', 30, 71, 159], ['Mujer', 41, 69, 160], ['Mujer', 51, 68, 158],
 ['Mujer', 26, 72, 169], ['Hombre', 23, 73, 178], ['Mujer', 28, 56, 168],
 ['Mujer', 25, 65, 159], ['Mujer', 30, 82, 166], ['Mujer', 44, 71, 164],
 ['Hombre', 33, 66, 162], ['Mujer', 35, 79, 188], ['Mujer', 46, 76, 187],
 ['Hombre', 32, 89, 173], ['Mujer', 43, 81, 160], ['Hombre', 47, 77, 181],
 ['Mujer', 37, 73, 178], ['Hombre', 45, 71, 164], ['Mujer', 49, 72, 181],
 ['Hombre', 30, 64, 184], ['Mujer', 32, 70, 162], ['Mujer', 40, 23, 168],
 ['Hombre', 41, 81, 187], ['Mujer', 38, 82, 177]]

Determinar usando Python

● Con los datos anteriores,
responda las siguientes
preguntas →

● ¿Cuántas mujeres hay en la planilla?
● ¿Cuál es la edad promedio en los

datos?
● ¿Cuántos hombres pesan más de

80 kg?
● ¿Cuál es la edad de la persona con

menor índice de masa corporal
(IMC) en los datos? IMC =
peso/altura2

Representando redes y relaciones
● Hay varias opciones para representar

relaciones
● Una forma es mediante díadas o pares así:
 L = [['Daniela','Javier'],
 ['Daniela','Isidora'],
 ['Isidora','Mario'],
 ['Mario','Luigi']]

● Otra forma es listando toda la vecindad de
cada persona:

 L = [['Daniela',['Javier','Isidora']],
 ['Javier',['Isidora']]
 ['Isidora',['Daniela','Mario']],
 ['Mario',['Isidora','Luigi']],
 ['Luigi',['Mario']]]

Ejemplos de redes:
● Sociogramas o redes sociales;
● Cadenas tróficas;
● Redes de infrastructura, ej, eléctricas,

viales, de agua, etc;
● Filogenia;
● Organigramas; etc.

Determinar usando Python

Sea L como sigue:

 L = [['Daniela','Javier'],
 ['Daniela','Isidora'],
 ['Isidora','Mario'],
 ['Mario','Luigi'],
 ['Mario','Koopa'],
 ['Bario','Mario'],
 ['Daniela','Arturo'],
 ['Ana','Arturo']],

Implemente →

● Defina la función actores(L) que retorne
la lista de los nombres de los actores de las
relaciones en L, sin que se repitan o falten
nombres

● Defina la función vecinos(nom,L) que
retorne la lista de los contactos asociados
al actor de nombre nom

● Defina la función vecinos2(nom,L) que
retorne la lista de nombres de los contactos
de los contactos (sin repetir nombres)
asociados al actor de nombre nom

Representando matrices
● Podemos representar una matriz como una

lista de filas
● La matriz a la izquierda se puede representar

como:
 L = [[2, 4, 6], [6, 4, 2]]

● El elemento de la fila i y columna j es entonces
 L[i][j]

● Si la matriz es dispersa, o sea, la gran mayoría de sus elementos
son cero, entonces podemos indicar sólo aquellos valores que
son nulos (listas de [i, j, val])

● Para cosas más avanzandas, hay módulos especiales como
numpy y scipy

Ejercicios de matrices

Considere matrices del tipo:

M = [[m11, m12, ..., m1n],
 [m21, m22, ..., m2n],

 [mn1, mn2, ..., mnn]]

Implemente las siguientes funciones:→

● suma(A,B) que retorna una
nueva matriz representando A+B

● mult(A,B) que retorna una
nueva matriz representando A·B

● frobenius(A) que retorna la
raíz cuadrada de la suma de los
cuadrados de los términos de la
matriz

● maxim(A) que retorna el
máximo de los valores absolutos
de los términos de A

Suma de matrices

def suma(A,B):
 resp = []
 for i in range(len(A)):
 fila = []
 for j in range(len(A[i])):
 fila.append(A[i][j] + B[i][j])
 resp.append(fila)
 return resp

A = [[1,0,0], [0,2,0], [0,0,3]]
B = [[1,1,1], [0,1,0], [2,0,2]]
print("A: ", A)
print("B: ", B)
print("A+B:", suma(A,B))

● Solución a la izquierda (testcase para
verificar incluido)

● Output:
A: [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
B: [[1, 1, 1], [0, 1, 0], [2, 0, 2]]
A+B: [[2, 1, 1], [0, 3, 0], [2, 0, 5]]

Multiplicación de matrices

def mult(A,B):
 resp = []
 for i in range(len(A)):
 fila = []
 for j in range(len(A[i])):
 coef = 0
 for k in range(len(A[i])):
 coef += A[i][k] * B[k][j]
 fila.append(coef)
 resp.append(fila)
 return resp

A = [[1,0,0], [0,2,0], [0,0,3]]
B = [[1,1,1], [0,1,0], [2,0,2]]
print("A: ", A)
print("B: ", B)
print("A*B:", mult(A,B))

● Solución a la izquierda (testcase para
verificar incluido)

● Output:
A: [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
B: [[1, 1, 1], [0, 1, 0], [2, 0, 2]]
A*B: [[1, 1, 1], [0, 2, 0], [6, 0, 6]]

